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Forced Convection in a Circular Pipe with a Partially Filled
Porous Medium
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A study of forced convection in a circular pipe with a partially filled porous medium was
numerically investigated. The Brinkman-Forchheimer extension of the Darcy model was used
to analyze the and temperature distribution in the porous medium. Our study includes two types
of porous layer configurations : (1) a layer attached at the tube wall extending inward towards
the centerline and (2) a layer at the centerline extending outward. The effect of several para-
meters, such as Darcy number, effective viscosity, effective thermal conductivity, and inertia
parameter, as well as the effect of geometric parameters, were investigated.
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Model
Nomenclature Nu : Nusselt number
Roman Symbols p [ Pressure
c¢r . Forchheimer coefficient q * Heat flux
cp . Specific heat at constant pressure 7, # . Non-dimensional radial coordinate
Da  Darcy number R Radius of the circular pipe
F . Forchheimer number Ry Location of the interface between the fluid
b . Modified Bessel function of the first kind and the porous medium
of order zero R  Ratio of the effective thermal conductivity
L : Modified Bessel function of the first kind of the porous layer to the thermal conduc-
of order one tivity of the fluid
k! Thermal conductivity R, : Ratio of the effective viscosity of the po-
kers . Effective thermal conductivity of the po- rous layer to the viscosity of the fluid
rous layer T* . Temperature
K ! Permeability of the porous medium Tr  Average temperature

Ky . Modified Bessel function of the second To

K1 . Modified Bessel function of the second

. Wall temperature
kind of order zero u, % . Non—-dimensional axial velocity compo-
nent of the fluid

kind of order one un . Average velocity

Corresponding Author, x . Non-dimensional axial coordinate
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#  : Non-dimensional temperature

Subscripts

eff . Effective values
m . Average values

w . Values at the wall

Superscript

* . Dimensional variables

1. Introduction

The study of the characteristics of heat and
momentum convection in porous media has in-
creased significantly due to its relevance in a var-
iety of technology, including the design of cera-
mic barrier filter systems exposed to high tem-
peratures (Ahmadi and Smith, 2002a, 2002b,
1998 ; Back et al., 1997), superadiabatic combus-
tion (Jeong et al., 1998), fuel cell applications
(Nguyen and He, 2002 ; He et al., 2000), and
membrane science and technology (Mckenzie et
al, 1994 ; Webber et al,, 1990),

Forced-convection heat transfer in a channel or
a tube partially filled or saturated with porous
media is of mathematical and practical interest.
Kaviany (1985) analyzed heat transfer in a chan-
nel filled with porous media using an equation
based on the Brinkman-extended Darcy flow mo-
del. Vafai and Kim (1989) reported an exact solu-
tion of that equation, including inertia (Brink-
man-Forchheimer extended Darcy equation) for
convective heat transfer in a channel with uniform
wall heat flux under the boundary layer assump-
tion. Analytic solutions of the Brinkman-For-
chheimer equation and associated heat transfer
equation for a plane channel were reported by
Nield et al.(1996), where they investigated the
effect of several parameters, including effective
viscosity, Darcy number, and Forchheimer num-
ber.

Poulikakos and Kazmierczak (1987) investigat-
ed the forced convection in a channel and a cir-
cular pipe partially filled with porous medium.
Specifically, they studied the effects of the porous
layer thickness, Darcy number, and effective ther-
mal conductivity of the porous media on heat
transfer through exact solutions of the Brink-

man-extended Darcy and energy equations. Their
analysis, however, was limited to the case where
the effective viscosity of the porous medium
was equal to the fluid viscosity. Poulikakos and
Renken (1987) also investigated the forced con-
vection in a channel, including the effects of
flow inertia, variable porosity, and friction. A
similar solution was obtained by Ethier and
Kamm (1989) for flow in a circular pipe partially
filled with porous medium.

In this paper, we examined the effect of several
parameters on forced convection in a tube par-
tially filled with a porous medium. Since there is
no analytic solution for the Brinkman-Forch-
heimer extension of Darcy momentum equation
in a circular pipe, we performed a numerical cal-
culation.

In particular, we have investigated the effects
of porous layer configuration; a layer attached
to the tube wall extending inward toward the
center line (Case I), and a layer extending out-
ward from the center line (Case II). The effects
of other parameters, such as Darcy number, the
porous layer thickness, effective viscosity, effec-
tive thermal conductivity of the porous media,
and Forchheimer number were also investigated.
A finite difference method was adopted with the
boundary conditions of both constant wall tem-
perature (Dirichlet type) and constant wall heat
flux (Neumann type).

2. Formulation

Schematics of the physical model and coordi-
nate system are shown in Fig. 1(a) for the Case I
and in Fig. 1(b) for the Case II. The location
of the interface between the fluid and the po-
rous medium is R and the pipe radius is Fp. The

Schematics of the physical model and coordi-
nate system : (a) outer porous layer (Case I)
and (b) inner porous layer (Case IT)
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porous layer has an effective viscosity fes and
an effective thermal conductivity ks, while the
fluid has viscosity # and thermal conduetivity 4.
For the flow system shown in Fig. 1, a steady, in-
compressible, hydrodynamic and thermal laminar
flow is assumed.

The governing equations for the velocity and
temperature fields in the fluid layer can be written
in dimensional form as

dp _ 1 d « du®
dx* ¥t dr* (ﬂr d?’*> (1)
LAT* 1 d  dT*

P e % dr (#r ar ) @

The Brinkman-Forchheimer extended Darcy and
energy cquations are used to the flow in the
porous region and are given by

dp - 1 4 . du®
de* P g <7 dr*> (3)
M wt — CrO_, x2
K JK
cdT*_, 1 d (. dT*
N ( dr* ) (@)

In deriving Eq. (4), a homogeneous isotropic
porous medium is assumed. At any point in the
porous medium, the solid matrix is assumed to be
in thermal equilibrium with the fluid filling the
pores (Bejan, 1995). Heat conduction in the axial
direction is neglected under a low Peclet number
assumption. Note that the effect of thermal dis-
persion is not considered in the energy equation,
since we take into account the effect of thermal
dispersion by modifying the thermal conductivity
{Vafai and Kim, 1989 ; Nield et al., 1996).

The appropriate boundary conditions for the
momentum and energy equations (Egs. (1)~
(4)) are given:

At v*=0,

~%:-=0 and ,C;Z: =0 for Cases I and II (5)

At »*=R,,

u*=0, T*=Ty or ~%§;—= /g;f for Case 1 )
(6

T* _quw

A for Case 11

u*=0, T*=T, or dd?’

1585

In addition to the conditions of continuity of
velocity and temperature at the interface, the fol-
lowing matching conditions at the fluid/porous
interface (¥*=R) are imposed :

du* _ du*
Hogpr = Fetr gy (7)
par_, 47"

dr* ar™

These boundary conditions represent the conti-
nuity of shear stress and heat flux at the interface.
By introducing the non-dimensional variables
defined by :

=t po R By= Ry
B TR PR
y u* (8)
_Ldp N
7 ( dx* ) R

where K is the permeability of the porous me-
dium. The non-dimensional parameters for the
ratio of the effective viscosity of the porous layer
to the viscosity of the fluid ([R.), Darcy num-
ber (Da) and Forchheimer number (F) defined
by:

. K
Ry=F2r, Da=—;

CrQ (" ;;f* > R (9)
F_

VK2

the momentum equations for the fluid (Eq. (1))
and porous (Eq. (3)) regions become

d?u 1 du
- 0
5 ar - b (10)
dw Vdu 11 2
T R YR Da(Fiu*—1) (11)

For the case of a vanishing permeability, K =0
(or Da=0), the velocity in the porous region
is equal to zero from Eq. (3). At the limit of
Dag— oo, Eq. (3) has the same form as the mo-
mentum equation in the fluid region except the
effective viscosity.
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If R,=1 and F=0, we can obtain an analytic
solution. The solution for Case I becomes (Ethier

and Kamm, 1989)
u=Dal[ A—#*/4] fluid region  (12)
u=Da[14+Bil{#) +B,K;(#)] porous region (13)

Here, I and K, are modified Bessel functions
of the first and second kind of order zero. The
constants A1, B, and B are given as:

Ar=1+R/4+BL(R) +B:.K(R)  (14)

B Fa(R)+(R/2) Ko(Ro) (15)
Y L(Ro) Ku(B) +Eo(Ro) L(R)
B — —(R/2) h(Ry) (16)

L(Ro) Ki(R) + Ko (Ro) L(R)

where [; and K are modified Bessel functions of
the first and second kind of order one,
For the Case II, we can obtain the velocity

profile solution for R.=1 and F'=0,
u=Da[R3—7%1/4+ C,In(#/Ry) fluid region (17)

u=Da[1+DL(?)] porous region (18)

where

Cl—DCZR[B111 +R/2] (19)

(RE—R% /4—1+R*In(R/R0) /2

D= ) < BB (B By)

(20)

If Ru#1 or F+#0, we are unable to obtain an
analytic solution, and therefore perform a nu-
merical approach. Equations (12) ~ (20) are also
used to verify the accuracy of the finite difference
scheme.

By introducing the non-dimensional radius
(#), velocity (#), temperature (&) and Nusselt
number (Nu) given by

et g T'=Ty
7’—.R(), u_.um,g Tm"Tw’

(1)

where average velocity #» and average tempera-
ture T3, are defined by
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Um ™= 22 *rrdr*
Ro
2 Ro (22)
— ® ¥ .0k
Tm-R%um'/O- u*T*r*dy
the energy equations become
2
j\}u [%’9_ 7%—} - fluid region  (23)
2
ﬁ [‘;’fz +-- Zf }_—ﬁ J, porous region (24)

in the constant wall heat flux case. Here, Rp=
kesr/k tepresents the ratio of effective thermal
conductivity of the porous layer to the thermal
conductivity of the fluid. For constant wall tem-
perature cases, the non-dimensional temperature
is multiplied into the right hand sides of Egs.
(23) and (24).

_I_[dzé’ i
NuLdr v dr

fluid region (25)

1 [d*4 1_}__A D :

Vi [dr = i R, Porous region (26)
Equations {23) ~(26) must be solved via the
following boundary conditions

df

6 |r=1=0 and T

=0 (27)
The solution procedure adopted in our study
begins with a trial value for Nz, then locates the
value satisfying the heat flux matching condi-
tion (7), the boundary conditions (27), and the
compatibility condition

flz“t@r d7'=% (28)
0

Notice that for the constant wall temperature
cage, the boundary condition (Eq. (27)) leads to
the trivial solution #=0. This can be avoided by
writing an expression for the temperature at the
first interior node near the wall surface as a func-
tion of Ny via the following discretized compati-
bility condition (Nield et al.,, 1996):
48

Nu==20 | @)
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3. Numerical
Method and Procedure

The governing Egs. (10}, (11}, and (23) ~ (26)
are solved via a second-order finite difference
scheme, discretized in the #-direction. Simpson'’s
integration method is applied to solve the in-
tegrals appearing in the compatibility condition
(Eq. (28)) and in the definition of average ve-
locity and temperature (Eq. (22)).

We tested the accuracy of our second-order
finite difference scheme through a comparison
with the exact solution for R,=1 and F=0, as

030
: — Calculation
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~ i
2
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=
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T
L
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]
=
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Fig. 2 Velocity profiles for the constant wall heat
flux case for F'=0 and Ru=1: (a) Case I
(R/Ry=0.8) and (b} Case Il (R/R,=0.5)
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shown in Fig. 2. Figure 2(a) shows the velocity
profile for Case I for R/Ry=0.8. Figure 2(b)
shows the velocity profile for Case II for R/Ry=
0.5. These figures confirm that our numerical
scheme predicts the velocity profile accurately. To
test our numerical scheme for the energy equa-
tion, we calculated the limiting case of the tube
with pure fluid, ie., Ry=1, F=0, and Da — o©.
We obtained Nu of 4.36 and 3.66 for the cons-
tant wall heat flux and constant wall tempera-
ture cases, respectively. We also calculated the
limiting case of a tube filled with porous media,
ie., Ru«=1, F=0, and Dag— 0. Our values for
Nu converge to 8.00 and 5.78 for the constant
wall heat flux and for the constant wall tempera-
ture cases, respectively, demonstrating the accura-
cy of our scheme.

4. Results and Discussion

The effects of physical parameters, including
Da, F, Ry, Rp, as well as geometric parameters,
such as the porous layer thickness and the ar-
rangement of the layer, which were of special
interest, were investigated.

Figure 2 demonstrates that the presence of the
porous layer causes the fluid velocity to decrease.
This effect becomes more remarkable as the Da
becomes smaller, as smaller Da corresponds to
smaller permeability and hence less flow for a
given pressure gradient. Although both configura-
tions, Case I (Fig. 2(a)) and Case II (Fig. 2(b)),
show qualitatively similar behavior at larger Dag,
the effects of the arrangement of the porous layer
on the velocity profile are more significant as Da
decreases. The temperature profiles for Cases I

.and II are shown in Fig. 3. The temperature

gradient at the pipe wall is greater for Case 1I
(Fig. 3(b)) as compared to Case I (Fig. 3(a))
for given Dag. The temperature gradient becomes
increasingly steep as the Da decreases, making
the Nu for the Case II greater than that for
Case I, as shown in Fig. 4. This demonstrates
the dependence of N# on the porous layer confi-
guration.

The most noticeable fact in Case II (Fig. 4(b))
is the existence of maximum Nu. This is contrary
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Fig. 3 Temperature profiles for the constant wall
heat flux case for F=0: (a) Casel (R/Ry=
0.8) and (b) Case II (R/R,=0.5)

to the case [, which possesses a minimum Nz
(Fig. 4(a)). Nu for Case 1l is larger for all values
of Da and ithickness of the porous layer, in
contrast to Case I, due to the relatively small
temperature difference (Tyw— Tm). For Case I,
Poulikakos and Kazmierczak (1987) provide an
explanation for Nu dependence on the porous
layer thickness. Similar rationale is applicable to
Case II. As the thickness of the porous layer
increases, the flow rate in the pipe decreases, and
hence both T, and T, increase since the wall
heat flux remains constant. The increasing rates of
Tw and T, however, depend on the thickness
of the porous region. When the thickness of the
porous layer is small, the average temperature is
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Fig. 4 Effect of porons layer thickness on Nusselt

number for F=0: (a) Case I with constant
wall heat flux, (b) Case Il with constant wall
heat flux, and (c) Casc I with constant wall
temperature
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affected significantly by the existence of the layer,
and, therefore, T} increases more rapidly than
Tw as the porous layer thickness increases. As a
result, the temperature difference (73— Ti) de-
creases, which results in the increase of the Nzt
as compared to the porous layer free case. The
average tempcrature rise becomes more remark-
able up to a critical thickness of the layer. Upon
further increasing of the layer thickness, how-
ever, Im has weaker dependence on the thick-
ness, hence the temperature difterence (7w~ Th)
increases after the critical thickness of the layer
has been reached and, as a result, Nu begins to
decrease. Notice that when the pipe is fully filled
with a porous medium (R/R.=1), Nu is 8.00
(Njeld and Bejan, 1992) as Da— 0. Note also
Nu becomes the well-known value of 4.36
(Bejan, 1995) as Da—co for fully developed
pipe flow. As expected, the effect of the porous
layer diminishes as Da increases, i.e., permea-
bility increases. The maximum value of N shifts
to the left as Da increases. This result implies
that the critical thickness of the porous layer,
where 7o begins to increase slower than Zu,
becomes smaller for higher permeability porous
media.

Figure 4{(c) illustrates N for Case I with cons-
tant wall temperature boundary condition. Nu is
generally smaller than for the constant-flux boun-
dary case. As shown in Fig. 4(c), the dependence
of Nu on the porous layer thickness and Da for
the constant wall temperature case is qualitatively
similar to that of the constant wall heat flux case.
As a result, this trend is expected to continue for
the other parameters used. Wec investigated the
effects of various parameters for the constant wall
heat flux case.

The effect of F for various Dg with R.=1 is
shown in Fig. 5. In accord with the asymptotic
result, as shown in Fig. 5(a), Nu shows a tend-
ency toward the slug flow value of 8.00 for the
fully porous layer case. Here, Ny incrcases with
F. However, the Nu dependence on Da be-
comes smaller as I increases. The values of Nu
in Case II (R/R,=0.5) are larger than those of
the fully-porous case for all values of Da and
F, and the difference in Nz becomes significant
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Fig. 5 Effect of F on the Nusselt number for con-
stant wall heat flux with R,=1{; (a) fully
porous case, (b) Case I (R/FR,=0.5), and
(c) Case II (R/Ry=0.5)
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as Da decreases. However, this is just a coinci-
dence since Nu depends not onty on Dg but also
on the thickness of the porous layer, as shown in
Fig. 4. It is worth noting that N# decreases with
permeability for Case I with R/R;=0.5 (Fig. 5
(b)), which is the reverse of the trend shown
in the fully porous case (Fig. 5 (a)) and Case II
with R/ Ry=0.5 (Fig. 5(c)).

The effect of F'in Fig. 6 is qualitatively equiv-
alent to decreasing the permeability of the porous
layer (i.e. shown in Fig. 2). As F increases, the
velocity profiles are flattened, as shown in Fig. 6.
However, the shape of the temperature distri-
bution does not always sharpen as I increases.
Rather, it depends on the geometry and porous
layer thickness as shown in Fig. 7. For Case I
with R/R=0.5 (Fig. 7(b)), the increase of F
causes a flattening, not a sharpening, of the tem-
perature distribution shape, contrary to the other
cases (Figs. 7(a) and (c)). However, for the fully
porous layer case, an increase in F' always results
in sharpening of the temperature profiles for the
parameter range we studied, which is the result
obtained by Nield et al. (1996).

Figure 8 shows the effect of F on Nu for
R.=0.1, | and 10, respectively. For all values of
Ry, Nu increases with F for the fully porous
case and Case Il (R/Ro=0.5) as shown in Figs.
8(a) and (c). This is because an increase in F
causes the flow to be more slug-type ; hence the
temperature difference decreases resulting in an
increase in Nu. In the Case I ( R/ Ky=0.5), how-
ever, Nu decreases as the drag increases. The
explanation for this result is given by examiining
the effect of porous layer on Ty. When the porous
layer is attached at the wall, it is expected that
the wall temperature will be affected more signi-
ficantly than 7, by the existence of a porous
layer. As a result, the temperature difference in-
creases, and thus Nu decreases.

Predicting the effect of the Fu on Nu is not
straightforward, As Kp varies from 1 to 10, Nu
increases for ali values of F for the fully porous
case (Fig. 8(a)), while there is no such trend in
Case I (R/Ry=0.5) and Case II (R/R=0.5),
as shown in Figs. 8(b) and (c). Generally, the
velocity profile varies considerably with Ry as
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Fig. 6 Effect of F on the velocity for constant wall
lheat flux with Rx=1 and Da=0.1: (a) fully
porous case, (b) Case 1 (R/Ry=0.5), and

(c) Case Il (R/Ry=0.5)
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plotted in Fig. 9, but the temperature profiles
are not significantly affected by Ry, as is shown
in Fig. 10. For Rux¥1, the velocity profiles show
steep changes at R/ Rq=0.5 due to the shear stress
matching condition (Eq. (7)). The shear rate is
not continuous, although the shear stress is con-
tinuous at R/Re=0.5. The dependence of Nu
on R, and the thickness of the porous layer, as
well as on Da, are shown in Fig. 11, which
demonstrates that Nu does not depend on R,
directly for either Case I or Case II.

The effect of K. on Nu is plotted in Figs. 12
(a) and (b), which show that Nu increases with
R, and Nu linearly depends on Ry for the fully-
porous case. As the thickness of the porous layer
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decreases, the dependence of N« an Ry becomes
nonlinear. It is worth noting that for the half
porous layer (R/R;=0.5), Nz of Case II is
larger than of the Case I for 7,<1. However,
for Rx>1, Nu of Case I is greater than that of
Case II. For R,<1, the average temperature of
Case II is larger, as shown in Fig. 13, and thus
the (Tp— Tw) becomes smaller. Therefore, Nu
for Case II is larger than the Nu for Case I. The
reverse trend appears for K> 1.

5. Conclusions

The forced convection in a circular pipe with a
partially filled porous medium was numerically
investigated. Two types of configurations (inner
and outer porous layer denoted as Cases I and II)
were investigated for various parameters, includ-
ing the Darcy number, the thickness of porous
layer, and the ratio of the viscosity & thermal
conductivity of the porous medium to those of the
fluid. The results are summarized as follows :

(1) Nu dependence on the thickness of the
porous medium is not uniform. There exists a
critical porous layer thickness where the Nu
reaches a maximum for Case II and reaches a
minimum for Case I for any Darcy number.

(2) Nu increases with Forchheimer number
for the fully porous case and Case II (R/R,=0.
5). For the Case I (R/Ro=0.5), Nu decreases as
Forchheimer number increases.

(3) Nu increases with the viscosity ratio. The
effect of the viscosity ratio on the Nu is not
simple, since Nu depends also on Darcy number,
the porous layer thickness, the configuration of
the layer, as well as on the viscosity ratio.

(4) For a given porous layer thickness, the
value of Nu depends on the type of porous layer
configuration.
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